The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis.
نویسندگان
چکیده
Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder that is more prevalent in males than in females. A similar gender difference has been reported in some strains of transgenic mouse models of familial amyotrophic lateral sclerosis harbouring the G93A mutation in CuZn superoxide dismutase. Mitochondrial damage caused by pathological alterations in Ca(2+) accumulation is frequently involved in neurodegenerative diseases, including CuZn superoxide dismutase-related amyotrophic lateral sclerosis, but its association with gender is not firmly established. In this study, we examined the effects of genetic ablation of cyclophilin D on gender differences in mice expressing G93A mutant CuZn superoxide dismutase. Cyclophilin D is a mitochondrial protein that promotes mitochondrial damage from accumulated Ca(2+). As anticipated, we found that cyclophilin D ablation markedly increased Ca(2+) retention in brain mitochondria of both males and females. Surprisingly, cyclophilin D ablation completely abolished the phenotypic advantage of G93A females, with no effect on disease in males. We also found that the 17β-oestradiol decreased Ca(2+) retention in brain mitochondria, and that cyclophilin D ablation abolished this effect. Furthermore, 17β-oestradiol protected G93A cortical neurons and spinal cord motor neurons against glutamate toxicity, but the protection was lost in neurons lacking cyclophilin D. Taken together, these results identify a novel mechanism of oestrogen-mediated neuroprotection in CuZn superoxide dismutase-related amyotrophic lateral sclerosis, whereby Ca(2+) overload and mitochondrial damage are prevented in a cyclophilin D-dependent manner. Such a protective mechanism may contribute to the lower incidence and later onset of amyotrophic lateral sclerosis, and perhaps other chronic neurodegenerative diseases, in females.
منابع مشابه
Neurobiology of Disease Enhancing Mitochondrial Calcium Buffering Capacity Reduces Aggregation of Misfolded SOD1 and Motor Neuron Cell Death without Extending Survival in Mouse Models of Inherited Amyotrophic Lateral Sclerosis
Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca 2 ) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with man...
متن کاملThe P66Shc/Mitochondrial Permeability Transition Pore Pathway Determines Neurodegeneration
Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT) and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D), a key regulatory component of the PT pore (PTP) that triggers mitochondrial swelling, resulted to be protected in pr...
متن کاملEvaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion
Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...
متن کاملMutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملThe role of mitochondria in amyotrophic lateral sclerosis
Mitochondria are unique organelles that are essential for a variety of cellular processes including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). Disruption of mitochondrial structure, dynamics, bioenergeti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 135 Pt 9 شماره
صفحات -
تاریخ انتشار 2012